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• Sequence of nucleotides that appears as multiple contiguous, near-identical 
copies arranged consecutively.

• Length of these repeat units vary from a few base pairs in STRs to a hundred base 
pairs in VNTRs and satellite DNAs.

• Exact:      ACGTACGTACGTACGTACGT

• Approximate:   ACTTACTACGTCCGTACGGT
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Tandem repeats make up about 8-10% of the human genome.

Closely linked to several neurological and developmental disorders like Huntington’s 
disease, Friedreich’s Ataxia, fragile X syndrome.

Satellite repeats are found to be abundant in centromeric regions of many organisms and 
are essential for studying genome stability and evolutionary dynamics.

Tandem repeats generated by certain technologies such as those used for circular 
molecules can be useful for full-length circular RNA assembly.
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Study of Satellite DNAs

Satellite Family
Size of 
Repeat 
Unit (bp)

Location in Human 
Chromosome

α 170 Centromeres of all 
chromosomes

β 68 Centromeres of chromosomes 
1, 9 13, 14, 15, 21, 22, and Y

Satellite 1 25-48
Centromeres and other regions 
in heterochromatin of most 
chromosomes

Satellite 2 5 Most chromosomes

Satellite 3 5 Most chromosomes

Microsatellites 1-10 Widely distributed throughout 
the chromosome

Minisatellites 10-60 Telomeres of many 
chromosomes

https://en.wikipedia.org/wiki/Satellite_DNA
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Assemble circular RNA
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Reconstruct repeat 
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Sequencing

circRNA
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Input: an error-prone (long) sequence/read.

ACTTACTACGTCCGTACGGT
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Input: an error-prone (long) sequence/read.

ACTTACTACGTCCGTACGGT
 
Output: tandem repeat unit (if any).

ACGT

Tandem Repeat Reconstruction
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• Most tools are designed for reconstruction of short units from relatively low error data.
•  mreps, dot2dot.
• They often do not perform well with higher repeat lengths and/or lower frequencies.
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• Most tools are designed for reconstruction of short units from relatively low error data.
•  mreps, dot2dot.
• They often do not perform well with higher repeat lengths and/or lower frequencies.

• Tools capable of managing high error rates are rare, existing ones struggle to achieve satisfactory 
accuracy in challenging settings.
• mTR struggles with repeats of low copy numbers.
• TideHunter compromises accuracy when dealing with repeats of small length.

• Other tools focus on quantification rather than reconstruction.
• DeepRepeat, ExpansionHunter.

Existing Methods
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EquiRep: a new tool for reconstructing tandem 
repeat units from error-prone sequences. 
• Robust against errors.
• Effective in detecting repeats of large length and 

low frequency.
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• Equivalent positions: i ∼ j, if R[i] and R[j] originate from the same letter in the true 
unit U. 
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• Diagonal-free self-alignment: Local alignment between sequence R and itself, 
with constraint that the same position cannot be aligned to itself.                  
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i j

kj

δ ← min{M [i, j], M [i, k], M [j, k]}
M′ [i, j]  ← M′ [i, j] + δ
M′ [j, k] ← M′ [j, k] + δ
M′ [i, k] ← M′ [i, k] + δ
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i j

kj
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kj

M [1, 5]  > 0
M [5, 9]  > 0

δ ← min{M [i, j], M [i, k], M [j, k]}
M′ [i, j]  ← M′ [i, j] + δ
M′ [j, k] ← M′ [j, k] + δ
M′ [i, k] ← M′ [i, k] + δ



Constructing Refined Matrix M’

54

i j

kj

M [1, 5]  > 0
M [5, 9]  > 0
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M′ [1, 5]  ← M′ [1, 5] + δ
M′ [5, 9] ← M′ [5, 9] + δ
M′ [1, 9] ← M′ [1, 9] + δ
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i j

kj

δ ← min{M [i, j], M [i, k], M [j, k]}
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• Generate a random unit U of length L.

• Concatenate multiple copies U with 
frequency F (number of copies).

• Introduce random errors: insertions, 
deletions, and substitutions at equal 
probabilities at rate R.

• Insert random strings at both sides of 
the concatenated string.

• Generate data for different 
combinations of L, F, R.
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distance: 

• Let P be the predicted unit.

• Let T be a ground truth repeat unit.

• We calculate the edit distance 
between T and all possible rotations 
of P, and take the minimum value.
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P

• Normalized rotation-aware edit 
distance: 

• Let P be the predicted unit.

• Let T be a ground truth repeat unit.

• We calculate the edit distance 
between T and all possible rotations 
of P, and take the minimum value.

• We divide the minimum distance by 
the true unit length for 
normalization.

T
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Average normalized rotation-aware edit distance at 10% error rate

Unit length 50Unit length 10 Unit length 500
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• We adopt a dataset reported in Yoshimura et al. 
that studied the assembly of C. elegans genome 
using Nanopore long-reads data.

Yoshimura, Jun, et al. "Recompleting the Caenorhabditis elegans genome." Genome research 29.6 (2019): 1009-1022.
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• We adopt a dataset reported in Yoshimura et al. 
that studied the assembly of C. elegans genome 
using Nanopore long-reads data.

• We collect the raw long reads that are aligned to 
centromere and extract rough repeat regions 
using dotplots.

Yoshimura, Jun, et al. "Recompleting the Caenorhabditis elegans genome." Genome research 29.6 (2019): 1009-1022.

Dotplot from Yoshimura, Jun, et al.
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• We adopt a dataset reported in Yoshimura et al. 
that studied the assembly of C. elegans genome 
using Nanopore long-reads data.

• We collect the raw long reads that are aligned to 
centromere and extract rough repeat regions 
using dotplots.

• The ground-truth sequence of the unit is 
available, which are obtained by curating from 
PacBio HIFI datasets.

Yoshimura, Jun, et al. "Recompleting the Caenorhabditis elegans genome." Genome research 29.6 (2019): 1009-1022.
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• We adopt a dataset reported in Yoshimura et al. 
that studied the assembly of C. elegans genome 
using Nanopore long-reads data.

• We collect the raw long reads that are aligned to 
centromere and extract rough repeat regions 
using dotplots.

• The ground-truth sequence of the unit is 
available, which are obtained by curating from 
PacBio HIFI datasets.

• We calculate the normalized rotation-aware edit 
distance between the predicted unit and the 
ground truth unit. 

Yoshimura, Jun, et al. "Recompleting the Caenorhabditis elegans genome." Genome research 29.6 (2019): 1009-1022.

Dotplot from Yoshimura, Jun, et al.
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• This set of real data is a Rolling Circle 
Amplification based Nanopore 
sequencing protocol from Xin et al. 

Xin, Ruijiao, et al. "isoCirc catalogs full-length circular RNA isoforms in human transcriptomes." Nature communications 12.1 (2021): 266.
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• This set of real data is a Rolling Circle 
Amplification based Nanopore 
sequencing protocol from Xin et al. 

Xin, Ruijiao, et al. "isoCirc catalogs full-length circular RNA isoforms in human transcriptomes." Nature communications 12.1 (2021): 266.
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• This set of real data is a Rolling Circle 
Amplification based Nanopore 
sequencing protocol from Xin et al. 

• This dataset has been used to detect a 
catalogue of full-length circular RNAs 
from 12 human tissues. 

Xin, Ruijiao, et al. "isoCirc catalogs full-length circular RNA isoforms in human transcriptomes." Nature communications 12.1 (2021): 266.

long reads

Rolling Circular Protocol
+ 

Sequencing

circRNA



Experimental Setup: RCA Human Tissue 

85

• This set of real data is a Rolling Circle 
Amplification based Nanopore 
sequencing protocol from Xin et al. 

• This dataset has been used to detect a 
catalogue of full-length circular RNAs 
from 12 human tissues. 

• We collect a subset of 101 sequences of 
the Nanopore long reads from the human 
prostate tissue for analysis.

Xin, Ruijiao, et al. "isoCirc catalogs full-length circular RNA isoforms in human transcriptomes." Nature communications 12.1 (2021): 266.

long reads

Rolling Circular Protocol
+ 

Sequencing

circRNA
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• We present EquiRep, a new tool for reconstructing the tandem repeat unit from error-prone 
sequences. 

• EquiRep identifies equivalent positions within a sequence by combining self-local alignment with 
an innovative refinement step that reliably reduces noise.

• We present results that show EquiRep’s robustness against errors and effectiveness in 
reconstructing repeats of large length and low frequency.

• Given the scarcity of tools that can reliably reconstruct long, error-prone repeat units, we expect 
EquiRep to be widely used.

• Tool availability: https://github.com/Shao-Group/EquiRep.
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